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LETTER TO THE EDITOR 

The evolution of a two-dimensional soap froth with a single 
defect 

H J Ruskin and Y Feng 
School of Computer Applications. Dublin City University, Dublin 9. Irelad 

Received 13 September 1995 

Abstract. Using the direct simulation melhcd of Wedre and Kermode. we consider the pmblem 
raised by Levitan of a 2-D froth with a single defect. We have found that, for a single defect in 
an ideal hexagooal network. the secand moment. NI, of the distribution of the number of cell 
sides for the region of the defect does not tend lo a constant as claimed by Levitan. Some mxons 
for the wrying conelwions drawn by different authors about this problem are dso discussed. 

The soap froth as an ideal model of a cellular network has attracted considerable attention 
and has been studied theoretically and experimentally in recent years (see Weaire and Rivier 
(1984), Glazier etnl  (1987). Weaire and Lei (1990). Glazier and Weaire (1992), Herdtle and 
Aref (1992), etc). Interest has primarily focused on scaling properties obtained through the 
evolution of the froth with time. Long-term behaviour is characterized by system statistics 
such as the distribution, f ( n ) ,  o f ~ t h e  number of cell sides and the second moment of 
this distribution, ~2 = C(n - 6)’f(n). There is considerable experimental, theoretical 
and computational evidence that p2 tends to a finite limit (approximately 1.4), which is 
characteristic of the asymptotic scaling state of the froth. 

The initially transient behaviour of a relatively ordered froth has been interpreted in 
terms of the growth of individual topological defects. The study of this growth h& been 
taken up by Levitan (1994), who considered the insertion of a single local topological 
defect into a froth of hexagonal cells. He used an approximation which is attractive in that 
it offers the potential to simulate larger, closer-to-asymptotic systems, but results obtained 
were in disagreement with previous tentative conclusions (Weaire in Blackman and Taguena 
1991). We have. therefore, re-examined this problem by direct simulations which are more 
extensive than those previously undertaken. 

Levitan’s method first forces a T1 topological process (neighbour switching) to take 
place in a group of cells and follows this with a T2 process (cell elimination), for which the 
probabilities of a triangle, square and pentagon being formed are the same. In fact, the first 
TI process gives rise to two five-sided cells and two seven-sided cells in the network 
(figure 1). Levitan used a mean-field theory to show that the topological distribution 
associated with a single defect approaches a fixed asymptotic form, with a high peak 
f ( 6 )  z 0.6. This implies that p2 attaim a difJeerent and stable value in conflict with 
previous predictions. 

Using the direct simulation approach of Weairs and Kermode (1983b. 1984) and 
subsequent work, we have implemented a 2-D dry froth with a single topological defect, 
based on a perfect hexagonal network to ensure correspondence with Levitan’s original 
construction. The defect is based on a symmetrical arrangement of two pairs of pentagonal 
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Figure 1. The defective 2-D froth network. corresponding to Levitan’s method of inserting a 
single defect by forcing a TI process in an i d 4  hexagonal froth. 

Figure 2. A defective 2-D froth network. The network keeps the hexagonal basis, and a11 the 
non-defective cells are of the same shape and sim. 

and heptagonal cells with minor discrepancies in the areas of the component cells and with 
all hexagonal cells surrounding the defect having the same area (figure 1). Additionally, we 
consider another type of topological defect where the distortion is achieved by suppressing 
an edge in the original network giving an eight-sided cell with two symmetrical five-sided 
cells amongst its nearest neighbours (figure 2). We have also used an ordered Voronoi 
construction to create a third kind of defect (figure 3), in which the areas of the defect and 
its neighbouring cells have been adjusted as shown. Periodic boundary conditions are used 
but, for convenience, the defective cell is centrally placed in the network. Calculations are 
not pursued beyond the stage where the defect impacts on the boundary. 

We have implemented the froth with single defects as shown (figures 1, 2, and 3). for 
systems of 100, 400~and 900 cells respectively. We give details of the results for a system 
of 400 cells as an example. Similar results are found for all system sizes used. 

Figure 3. A defective 2-D froth network with an ordered Vomnoi ret-up. (Each vencx of an 
eight-sided cell and two fiveaided cells is a centre of a circumscribed circle that corresponds to 
the Delauney tessellation.) 

If we define an approximately circular ‘front’ of disturbance surrounding the large 
defective cell and including cells which have undergone a single topological change, the 
circular ‘front’ will include these (plus other cells which impinge on the circle in part, but 
which have not yet undergone change). Levitan (1994) similarly defines a ‘cluster’, which 
refers to the ‘front’ used in our simulations plus a boundary of hexagonal cells. The slight 
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Figure 4. The evolution of a froth with a single defect 
in a hexagonal network with numbers of time steps of 
( U )  40 and (b) 100. (Initial structure figure I.) 

Figure 5. The evolution of a froth with a single defect 
in a hexagonal network with numbers of time steps of 
(01 40 and (b)~lOO. (Initial SmcNre figure 2.) 

Figire 6. The evolution of a fmth with a single defect in a 
hexagonnl network with numbers of time steps of (a) 40 and (b) 
100 respectively. (Initial StNCtUE figure 3.) ( b )  

modification we have used does not affect the behaviour of p2 or the side distribution, but 
enables us to consider separately pz in thefront. Figures 4 4  show the evolution within 
the front at specific time steps for different initial defect types, corresponding to figures 1, 
2, and 3 respectively. Here the number of time steps relates to the number of diffusion and 
equilibration processes which have taken place, with the evolution time, T, measured in 
units of ( A o ) / K ,  where (Ao) is the initial average area over all cells, and K is the constant 
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Figure 7. (a)  and (b) show the topological distribution ffn) in the front with numbers of time 
steps of 60 (A). 120 (0). and 160 (0). (Initial sei-up figures 1 and 2 respectively.) 

in Von Neumann's law, and may be arbitrarily chosen (Kermode and Weaire 1990). We 
can see that the number of sides of the large defective cell increases with time, as does 
the perturbation front area of the disturbance. For the defect formed by edge suppression, 
starting from the ordered non-Voronoi network set-up (figure 2) and ordered Voronoi network 
(figure 3), we have observed very similar behaviour in the froth evolution (figures 5 and 6). 
We give detailed results for the initial structure shown in figures 1 and 2 as follows. 

The topological distribution f (n)  inside thefront, is shown in figures 7(u) and 7(b), 
at specific numbers of time steps for the different defect topologies (figures 1 and 2 
respectively). We find that there tends to be a peak at n = 5 in the front as evolution 
time increases, as opposed to the overall network of a normal froth which has a peak with 
n = 5 and n = 6 (Herdtle and Aref 1992). However, the distribution f ( n )  is now, of 
course, markedly right-skewed. These features are not extraordinary as movement of the 
front results in continual incrementation of the number of sides of the large defective cell. 

From our results. the second moment, p2. continues to change with time without 
reaching a fixed limit. Figures 8(a)~ and 8(b) show how the second moment, pz, in the 
overall network changes versus time, T (for initial set-ups in figures 1 and 2). The range of 
T includes about 200 diffusion and equilibration processes in our simulation. Topological 
and diffusive adjustments are made sequentially within each time step and considerable 
details of the evolution may be observed. Fluctuations in the value of pz around the 
underlying trend can be explained directly in terms of the TI and T2 processes, with a high 
p2 corresponding to the defect surrounded by a number of three- or four-sided cells, and 
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Figure 8. (U) and (b) show f i 2  in the overall network versus time 7 for a froth of 400 cells. 
(Initial set-up figures 1 and 2 respectively.) 

a sudden decrease in pi associated ,with the disappearance of one of these cells. During 
growth in the area of the defect, p2 keeps a relatively stable value until the next TI occurs. 
Clearly, as more cells are involved in the evolution and the number of sides of the defect 
increases, the value of p2 overall changes more rapidly and is dominated by the contribution 
of the defective cell. Over the whole range of T, p2 - TP appears to describe the observed 
behaviour. with p > 1. However, few changes take place initially, relative to the evolution 
as a whole, and for the upper range of T, 11.2 versus T is roughly linear, although it is not 
clear that a true asymptote is attained. 

For a simple theoretical model of a large defect with N sides surrounded by N small 
cells, newly converted side lengths of the small cells will be characteristic of the whole 
network, i.e. N - A(d)0.5, with A(d) the area of the defect. Then, in the asymptotic 
limit, Von Neumann’s law becomes dA(d)/dt = kA(d)0.5, i.e. A(d)  - T z .  Similarly, in 
the front, the topological distribution will be dominated by the defect, so p 2 ( d )  - N 2  with 
N - T, i.e. p z ( d )  - T’. Furthermore, the defect gradually involves more and more cells in 
the overall network, so asymptotically the exponents for the front and the overall network 
should be the same. From our simulations, we find for the defect that A(d)  increases 
with T at the expense of other cells distorted by topological changes. If we define the 
increased area A A ( d )  = A ( d )  - A(d)o; where A(d)o is the original area of the defect, for 
the defect formed by edge suppression (figures 2 and 3), we obtain roughly AA(d)  - T 2  
after the initial period of evolution, with the radius of the rough perturbation circle, r - T 
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Figure 9. ( U )  The increase in defective area AA(d) versus time, T. (b) The ndius I versus 
time, 7. for a froth of 400 cells. (Initid structure figure 2.) 
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Figure 10. ~ ( d )  in thefimr versus the avenge intercept. (4. (Initial smcture figure 2.) 

approximately; figures 9(a) and 9(b) illustrate for the set-up of figure 2. Furthermore, we 
find that pl(d) changes roughly linearly with the average intercept, ( d ) ,  where (d) equals 
the square root of the average cell area in the front (figure 10). 

It seems clear that the behaviour of a froth with a single defect in a uniform hexagonal 
network does not lead to a normal scaling state as found for the non-defective froth by 
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numerical simulation (and as predicted by theory). We find that f ( n )  in the front tends 
to develop a long tail extending to large values of n and with a peak at n = 5 .  This is 
in agreement with Aboav (1980). who also quoted 01 = 2 for the area growth exponent. 
However, the suggestion that pz overall varies linearly with time (see the comment by 
Weaire and Kermode (1983a) on Aboav’s work) is not wholly supported by our findings 
and is in conflict with the predictions of the simple model. It is only with hindsight that it has  
been realized that Aboav was dealing with a transient system with defects, characterized by 
different values of the growth exponents. Our own results are probably not in the asymptotic 
region since the maximum number of sides achieved by any defect is N = 44 (for the set-up 
in figure 2).  Nevertheless, they are supported by recent work by Glazier (1995). We aIso 
find that there is some similarity between the behaviour of our system and that of Levitan 
(1994), but we do not agree with afured form for f ( n )  as obtained by Levitan. The value 
of p2 (whether for the front or for the overall network) does not reach a steady state after 
initial fluctuations at this system size, unlike normal froth evolution. 

Our results for the behaviour of the front are in agreement with the original experimental 
work of Aboav (1980), and recent simulations of Glazier (1995), indicating that a different 
scaling relation applies there. Regardless of the defect type and initial configuration, 
there are some grounds for support of the suggested system behaviour put forward by 
Levitan (1994), but the overall results are in conflict with his predictions for the quantities 
characterizing the long-term evolution. 

We should like to thank Professor Denis Weaire for several interesting discussions and for 
introducing us to the froth problem. 
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